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Abstract. Generalised Principal Component Analysis (GPCA) is a recently de-
vised technique for fitting a multi-component, piecewise-linear structure to data
that has found strong utility in computer vision. Unlike other methods which in-
tertwine the processes of estimating structure components and segmenting data
points into clusters associated with putative components, GPCA estimates a multi-
component structure with no recourse to data clustering. The standard GPCA
algorithm searches for an estimate by minimising a simple algebraic misfit func-
tion. The underlying constraints on the model parameters are ignored. Here we
promote a variant of GPCA that incorporates the parameter constraints and ex-
ploits constrained rather than unconstrained minimisation of a statistically mo-
tivated error function. The output of any GPCA algorithm hardly ever perfectly
satisfies the parameter constraints. Our new version of GPCA greatly facilitates
the final correction of the algorithm output to satisfy perfectly the constraints,
making this step less prone to error in the presence of noise. The method is ap-
plied to the example problem of fitting a pair of lines to noisy image points, but
has potential for use in more general multi-component structure fitting in com-
puter vision.

Keywords: Generalised principal component analysis, constrained minimisation,
multi-line fitting, degenerate conic.

1 Introduction

One of the challenges of image analysis and computer vision is to develop effective ways
to fit a multi-component structure to data. A classical example problem is fitting multi-
ple lines to data [Lou et al., 1997,Venkateswar and Chellappa, 1992]. Several methods
have been proposed for solving this particular task, including those based on the Hough
transform [Duda and Hart, 1972], K-subspaces [Ho et al., 2003], subspace growing and
subspace selection [Leonardis et al., 2002], EM [Tipping and Bishop, 1999] and
RANSAC [Forsyth and Ponce, 2003] algorithms. More recently, there has been inter-
est in fitting multiple linear manifolds to data. This more general problem arose in
the analysis of dynamical scenes in computer vision in connection with the recovery
of multiple motion models from image data [Vidal et al., 2002, Vidal and Ma, 2004,
Vidal et al., 2006]. To tackle it, a new approach has been put forth under the label of gen-
eralised principle component analysis (GPCA) [Vidal et al., 2003, Vidal et al., 2004,
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Vidal et al., 2005]. The GPCA method employs a parametric model in which parame-
ters describe a multi-component, piecewise-linear structure to which various parts of a
data set adhere. The number of linear components is assumed to be fixed and known
beforehand. The relationship between data and components is encoded in a system of
multivariate polynomial equations. When all components are hyperplanes, this system
reduces to a single equation. In the special, but representative, case of fitting multiple
lines to planar data, the order of the single polynomial describing the structure coincides
with the number of the line components, and the recovery of the components is achieved
by factoring the polynomial into a product of multivariate monomials, each correspond-
ing to a separate line. The success of the whole procedure rests upon generation of a
meaningful polynomial to factor.

This paper presents a variant of GPCA which advocates the use of constrained
optimisation as a crucial step in component recovery. We concentrate on a particular
problem of fitting two lines to data as in this case the underlying analysis is particu-
larly simple and illuminating. Notwithstanding the specificity of our presentation, the
multi-line and, more generally, multi-component fitting problems can be treated—upon
suitable modification—within the same general framework.

At the technical level, the contribution of the paper is three-fold. First, it gives a
statistically sound cost function measuring how well a given model instance describes
the data. The cost function is evolved by applying the maximum likelihood principle
to a Gaussian model of errors in the data. Second, a pair of lines is shown to be ef-
fectively estimated by minimising the cost function subject to a certain parameter con-
straint. A novel iterative method for computing an approximate constrained minimiser
is given. Finally, a simple method is presented for converting nearly optimal estimates
obtained by iterative constrained optimisation techniques (hyperbolae with high eccen-
tricity) into estimates representing a correct geometric structure (pairs of lines).

The original GPCA algorithm [Vidal et al., 2003, Vidal et al., 2006] employs alge-
braic factorisation of a multivariate polynomial whose coefficients are obtained via un-
constrained minimisation of a simple algebraic cost function, different from the one
used in the present paper. The method does not require data segmentation and as such
differs from iterative methods like K-subspaces and EM which alternate between es-
timating structure components and grouping the data around individual components.
However, because of its reliance on computation of roots of polynomials—a numeri-
cally fragile operation—the GPCA algorithm is sensitive to noise. To curb adverse ef-
fects of noise, the subsequent version of GPCA [Vidal et al., 2004,Vidal and Ma, 2004,
Vidal et al., 2005] uses polynomial differentiation instead of polynomial factorisation,
but at the cost of employing some form of data segmentation—one data point per com-
ponent is needed to effectuate the estimation step.

The present paper shows—and this is its main conceptual contribution—that the ap-
proach taken by the original version of GPCA can be sustained even in the presence of
moderate noise if a statistically motivated cost function is minimised subject to appro-
priate constraints. We demonstrate empirically that constrained optimisation leads, in
practice, to estimates that can be encoded into nearly factorisable polynomials. These
estimates can be upgraded to estimates corresponding to perfectly factorisable polyno-
mials by means of a simple correction procedure. Because a minor adjustment of the
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unconstrained minimiser is needed, the upgrading procedure operates reliably. Rather
than use polynomial factorisation, the correction procedure in our version of the GPCA
involves eigenvalue decomposition. Its simple form reflects the special nature of the
estimation problem considered.

The estimate obtained by applying the method presented in the paper represents a
pair of lines and as such is an instance of a conic—a degenerate conic. Thus, effec-
tively, our variant of GPCA is a method for degenerate-conic fitting and can be viewed
as an addition to the growing body of algorithms for fitting to data a conic of a type
specified in advance [Fitzgibbon et al., 1999, Halı́ř and Flusser, 1998, Nievergelt, 2004,
O’Leary and Zsombor-Murray, 2004].

2 Background

A line is a focus of points x = [m1, m2]T in the Euclidean plane R
2 satisfying the

equation
l1m1 + l2m2 + l3 = 0.

Employing homogeneous coordinates m = [m1, m2, 1]T and l = [l1, l2, l3]T , the same
line can be identified with the subset of the projective plane P

2 given by Zl = {m ∈
P

2 | lT m = 0}. A conic is a locus of points x = [m1, m2]T satisfying the equation

am2
1 + bm1m2 + cm2

2 + dm1 + em2 + f = 0,

where a, b and c are not all zero. Introducing the symmetric matrix C

C =

⎡
⎣

a b/2 d/2
b/2 c e/2
d/2 e/2 f

⎤
⎦ ,

the same conic can be described as ZC = {m ∈ P
2 | mT Cm = 0}. A non-

degenerate conic satisfies detC �= 0 and is either an ellipse, or a parabola, or a hy-
perbola depending on whether the discriminant Δ = b2 − 4ac is negative, zero or
positive. If detC = 0, then the conic is degenerate. A degenerate conic represents
either two intersecting lines, a (double) line, or a point, as we now critically recall.

A union of two lines, Zl1 ∪ Zl2 , obeys

lT1 m · lT2 m = mT l1l
T
2 m = 0

or equivalently, given that mT l1l
T
2 m = mT l2l

T
1 m,

mT (l1lT2 + l2l
T
1 )m = 0. (1)

With C = l1l
T
2 + l2l

T
1 , a symmetric matrix, the above equation can be rewritten as

mT Cm = 0, showing that Zl1 ∪Zl2 is identical with the conic ZC . The matrices lil
T
j

are rank-1, so the rank of C is no greater than 2 and the conic is degenerate. If l1 = l2,
then ZC represents a single, repeated line; in this case the conic equation (lT1 m)2 = 0
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is equivalent to the line equation lT1 m = 0. Finally, a point [p1, p2]T can be represented
as the degenerate conic (m1 − p1)2 + (m2 − p2)2 = 0 corresponding to

C =

⎡
⎣

1 0 −p1
0 1 −p2

−p1 −p2 p2
1 + p2

2

⎤
⎦ .

To see that a pair of lines, a double line and a point are the only possible types of
degenerate conic, suppose that C is a non-zero symmetric singular matrix. Then C
admits an eigenvalue decomposition (EVD) of the form C = V DV T , where V is
an orthogonal 3 × 3 matrix and D = diag(λ1, λ2, λ3), with λi (i = 1, 2, 3) a real
number [Horn and Johnson, 1985]. The eigenvalue decomposition differs from the sin-
gular value decomposition (SVD) of C in that the latter uses two orthogonal, possi-
bly different, matrices U and V , and that the former uses a diagonal matrix whose
entries are not necessarily non-negative. However, the EVD and SVD of the symmet-
ric C are closely related—any of the two orthogonal factors U , V in the SVD can
serve as V in the EVD, and D in the EVD can be obtained from the diagonal factor
in the SVD by placing a minus sign before each diagonal entry for which the corre-
sponding columns in U and V differ by a sign, with all remaining entries left intact.
For each i = 1, 2, 3, let vi be the ith column vector of V . Then, clearly, vi is an
eigenvector of C corresponding to the eigenvalue λi, Cvi = λivi, and, moreover,
C =

∑3
i=1 λiviv

T
i . Now detC = λ1λ2λ3 = 0 so one eigenvalue, say λ3, is zero,

implying that C =
∑2

i=1 λiviv
T
i . If another eigenvalue, say λ2, is zero too, then

C = λ1v1v
T
1 and, since the remaining eigenvalue, λ1, has to be non-zero, ZC coincides

with the line Zv1 . If λ3 is the only zero eigenvalue, then there are two possibilities—
either λ1 and λ2 are of same sign, or λ1 and λ2 are of opposite sign. In the first case
ZC reduces to the linear span of v3 = [v13, v23, v33]T and represents a single point in
P

2; if v33 �= 0, then this point is part of R
2 and is given by [v13/v33, v23/v33, 1]T . In

the other case, ZC represents a pair of lines in P
2. Indeed, without loss of generality,

we may suppose that λ1 > 0 and λ2 < 0. Then

λ1v1v
T
1 + λ2v2v

T
2 = l1l

T
2 + l2l

T
1 ,

where l1 =
√

λ1v1 +
√

−λ2v2 and l2 =
√

λ1v1 −
√

−λ2v2. Consequently,

mT Cm = mT l1l
T
2 m + mT l2l

T
1 m = 2(lT1 m)(lT2 m),

so ZC is the union of the lines Zl1 and Zl2 . The identification of ZC with Zl1 ∪Zl2 via
the factorisation of the binomial mT Cm as above exemplifies the general factorisation
principle underlying GPCA.

3 Estimation Problem

The equation for a conic ZC can alternatively be written as

θT u(x) = 0, (2)
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where θ=[θ1, · · · , θ6]T =[a, b, c, d, e, f ]T and u(x) = [m2
1, m1m2, m

2
2, m1, m2, 1]T .

The singularity constraint detC = 0 can be written as

φ(θ) = 0, (3)

where φ(θ) = θ1θ3θ6 − θ1θ
2
5/4 − θ2

2θ6/4 + θ2θ4θ5/4 − θ2
4θ3/4. Note that φ is homo-

geneous of degree 3—that is such that

φ(tθ) = tκφ(θ) (4)

for every non-zero scalar t, with κ = 3 the index of homogeneity.
Together, equations (2) and (3) form a parametric model that encapsulates the con-

figuration comprising a pair of lines and a point at one of these lines. In this setting, θ
is the vector of parameters representing the lines and x is the ideal datum representing
the point.

Associated with this model is the following estimation problem: Given a collection
x1, . . . , xn of observed data points and a meaningful cost function that characterises
the extent to which any particular θ fails to satisfy the system of copies of equation (2)
associated with x = xi (i = 1, . . . , n), find θ �= 0 satisfying (3) for which the cost
function attains its minimum.

The use of the Gaussian model of errors in data in conjunction with the principle of
maximum likelihood leads to the approximated maximum likelihood (AML) cost func-
tion

JAML(θ; x1, . . . , xn) =
n∑

i=1

θT u(xi)u(xi)T θ

θT ∂xu(xi)Λxi
∂xu(xi)T θ

,

where, for any length 2 vector y, ∂xu(y) denotes the 6 × 2 matrix of the partial deriv-
atives of the function x �→ u(x) evaluated at y, and, for each i = 1, . . . , n, Λxi

is a 2 × 2 symmetric covariance matrix describing the uncertainty of the data point
xi [Brooks et al., 2001, Chojnacki et al., 2000, Kanatani, 1996]. If JAML is minimised
over those non-zero parameter vectors for which (3) holds, then the vector at which
the minimum of JAML is attained, the constrained minimiser of JAML, defines the
approximated maximum likelihood estimate θ̂AML. The unconstrained minimiser of
JAML obtained by ignoring the constraint (3) and searching over all of the parameter
space defines the unconstrained approximated likelihood estimate, θ̂u

AML. The function
θ �→ JAML(θ; x1, . . . , xn) is homogeneous of degree zero and the zero set of φ is in-
variant to multiplication by non-zero scalars, so both θ̂AML and θ̂u

AML are determined
only up to scale. Obviously, θ̂AML is the preferred estimate of θ, with θ̂u

AML being the
second best choice.

4 Unconstrained Minimisation

The unconstrained minimiser θ̂u
AML satisfies the optimality condition for unconstrained

minimisation
[∂θJAML(θ; x1, . . . , xn)]θ=�θu

AML
= 0T
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with ∂θJAML the row vector of the partial derivatives of JAML with respect to θ. Direct
computation shows that

[∂θJAML(θ; x1, . . . , xn)]T = 2Xθθ,

where

Xθ =
n∑

i=1

Ai

θT Biθ
−

n∑
i=1

θT Aiθ

(θT Biθ)2
Bi,

Ai = u(xi)u(xi)T ,

Bi = ∂xu(xi)Λxi
∂xu(xi)T .

The optimality condition rewritten as

[Xθθ]θ=�θu
AML

= 0 (5)

serves as the basis for isolating θ̂u
AML. Two Newton-like iterative algorithms can be

used for solving (5). The fundamental numerical scheme (FNS) [Chojnacki et al., 2000]
exploits the fact that a vector θ satisfies (5) if and only if it is a solution of the ordinary
eigenvalue problem

Xθξ = λξ

corresponding to the eigenvalue λ = 0. Given a current approximate solution θc, the
stable version of FNS [Chojnacki et al., 2005] takes for an updated solution θ+ a nor-
malised eigenvector of Xθc

corresponding to the smallest eigenvalue. The iterative
process can be started by computing the algebraic least squares (ALS) estimate, θ̂ALS,
defined as the unconstrained minimiser of the cost function JALS(θ; x1, . . . , xn) =
‖θ‖−2 ∑n

i=1 θT Aiθ, with ‖θ‖ = (
∑6

j=1 θ2
j )1/2. The estimate θ̂ALS coincides, up

to scale, with an eigenvector of
∑n

i=1 Ai for the smallest eigenvalue, and this can
be found via singular value decomposition as the right singular vector of the matrix
[u(x1), . . . , u(xn)]T corresponding to the smallest singular value. Incidentally, we
point out that the standard version of GCPA [Vidal et al., 2005] is based exclusively
on ALS cost minimisation.

With Mθ =
∑n

i=1(θ
T Biθ)−1Ai and Nθ =

∑n
i=1(θ

T Aiθ)(θT Biθ)−2Bi, equa-
tion (5) can equivalently be restated as

Mθθ = Nθθ, (6)

where the evaluation at θ̂u
AML is dropped for clarity. The heteroscedastic errors-in-

variables scheme in its basic form, or HEIV with intercept [Leedan and Meer, 2000,
Matei and Meer, 2000, Chojnacki et al., 2004a], is based upon the observation that a
vector θ satisfies (6) if and only if it is a solution of the generalised eigenvalue problem

Mθξ = λNθξ

corresponding to the eigenvalue λ = 1. Given a current approximate solution θc, HEIV
takes for an updated solution θ+ a normalised eigenvector of the eigenvalue problem
Mθcξ = λNθcξ corresponding to the smallest eigenvalue. Again the iterative process
can be seeded with θ̂ALS.
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5 Approximate Constrained Minimisation

A natural means for isolating the constrained minimiser θ̂AML is the constrained fun-
damental numerical scheme (CFNS) [Chojnacki et al., 2004b]. The scheme is a variant
of FNS in which Xθ is replaced by a more complicated symmetric matrix. As it turns
out, CFNS is sensitive to the choice of the underlying coordinate system and its prac-
tical success depends critically on good pre-conditioning. This is so because not only
the initial estimate has to be sufficiently close to the sought-after solution (as is the case
with all Newton-like methods), but also the smallest eigenvalue of the counterpart of
Xθ used in iterations has to be well separated from the remaining eigenvalues. As a
rule, to meet these conditions, a transformation of the data-related variables needs to
be applied as a pre-process and a conformal transformation of the parameters-related
variables has to follow in a post-process. Work on a suitable pre-conditioning for the
case in question is in progress.

To find an estimate satisfying the singularity constraint and having the property that
the value of JAML at that estimate is only slightly increased compared to JAML(θ̂u

AML),
we take a more conventional approach and adopt an adjustment procedure. It is a sepa-
rate post-process operating on the result of unconstrained minimisation, θ̂u

AML. The es-
timate obtained via a post-hoc correction can be viewed as an approximate constrained
minimiser.

A standard adjustment technique, due to Kanatani [Kanatani, 1996], generates iter-
atively a sequence of estimates, starting from θ̂u

AML, with the use of the update rule

θ+ = θc − [∂θφ(θc)Λθc
∂θφ(θc)T ]−1 × φ(θc)Λθc

∂θφ(θc)T .

Here Λθ = Qθ(X�θu
AML

)−Qθ, with the notation A− for the Moore-Penrose pseudo-

inverse of A, Qθ = I l − ‖θ‖−2θθT , with I l the l × l identity matrix and l the length
of θ, here set to 6. The scheme is repeated until the value of the constraint residual |φ|
is acceptably small. The final estimate delivers an approximation to θ̂AML.

In an effort to achieve a greater resemblance to CFNS, we have developed an alter-
native post-hoc correction (PHC) technique. It exploits the iterative process

θ+ = θc − [∂θφ(θc)H−
θc

∂θφ(θc)T ]−1 × φ(θc)H−
θc

∂θφ(θc)T .

Here Hθ is the Hessian of JAML at θ, given explicitly by Hθ = 2(Xθ − T θ), where

T θ =
n∑

i=1

2
(θT Biθ)2

[
AiθθT Bi + BiθθT Ai − 2

θT Aiθ

θT Biθ
BiθθT Bi

]
.

As in Kanatani’s method, the process is initialised with θ̂AML and is continued until the
value of the constraint residual is sufficiently small.

It should be noted that while the value of the constraint residual at successive updates
generated by any iterative (approximate) constrained minimisation technique like PHC
systematically decreases as the computation progresses, the singularity constraint is
hardly ever perfectly satisfied. The nearly perfect, but not ideal, satisfaction of the con-
straint means that, geometrically, the estimates are not pairs of lines, but are hyperbolae
of high eccentricity—that is, hyperbolae that are elongated and have flat branches.
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6 EVD Correction

To ensure that two-line fitting algorithms produce usable estimates, a method is required
for enforcing the singularity constraint in a perfect manner. The method should be ap-
plicable to the final output of any two-line estimation procedure and, ideally, should
deliver the result of the constraint enforcement in the form of a pair of lines. Here we
describe one such correction technique based on EVD. It is tuned to fitting a pair of
lines and does not directly generalise to fitting larger sets of lines. The method can be
viewed as an alternative to the factorisation technique proposed in [Vidal et al., 2003].

A given estimate is first reshaped to take the form of a symmetric matrix C. Then
EVD is performed on C yielding C = V DV T with V = [v1, v2, v3] orthogonal and
D = diag(λ1, λ2, λ3), |λ1| ≥ |λ2| ≥ |λ3|. Finally, C is modified to Cc = V DcV

T ,
where Dc = diag(λ1, λ2, 0). The corrected estimate Cc now perfectly satisfies the
singularity constraint. This estimate can further be reinterpreted in accordance with the
geometric nature of the associated set ZCc

. If λ1 and λ2 are of opposite signs, then ZCc

is the pair of lines

l1 =
√

sgn(λ1)λ1v1 +
√

sgn(λ2)λ2v2,

l2 =
√

sgn(λ1)λ1v1 −
√

sgn(λ2)λ2v2.
(7)

If λ2 = 0, then ZCc
is the double line v1. If λ1 and λ2 are of same sign, then ZCc

represents the point v3 = [v13, v23, v33]T in P
2, which, when v33 �= 0, belongs to R

2

and is given by [v13/v33, v23/v33, 1]T . The last case can be viewed as exceptional and
is not expected to arise frequently. In a typical situation, the input estimate C is such
that the associated values λ1 and λ2 have opposite signs and the corrected estimate Cc

is geometrically represented by the lines l1 and l2 given in (7).

7 Experiments

To assess potential benefits stemming from the use of constrained optimisation in the
realm of GPCA, we carried out a simulation study. Three algorithms, ALS, HEIV and
PHC (described in Sections 4 and 5), were set to compute a pair of lines from synthetic
data. We utilised a particular version of HEIV, namely the reduced HEIV scheme, or
HEIV without intercept, that operates essentially over a subspace of the parameter space
of one dimension less [Chojnacki et al., 2004a]. The covariances of the data employed
by HEIV and PHC were assumed to be the default 2 × 2 identity matrix corresponding
to isotropic homogeneous noise in image measurement.

To create data for our study, we randomly generated 100 pairs of lines. Along each
line, in a section spanning 100 pixels in the x direction, 100 points were generated
by sampling from a uniform distribution. To these points homogeneous zero-mean
Gaussian noise was added at three different levels characterised by the standard de-
viation σ of 0.1, 0.55 and 1 pixel. This data was generated so as to represent the kinds
of line segment that may be found by an edge detector. An example of the data is given
in Figure 1.

Each estimator was applied to the points generated from each of the 100 pairs of lines
and the resulting estimates were recorded and evaluated. As a measure of performance,
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Fig. 1. An example data set and corresponding (true) pair of lines

Table 1. Averages of testing results

σ Method JAML Rank-2 JAML

ALS 1.286 × 10−1 2.060× 101

0.1 HEIV 1.084 × 10−2 8.421× 10−2

PHC 1.065 × 10−2 1.065× 10−2

ALS 1.444 × 101 5.977× 105

0.55 HEIV 4.098 1.801× 102

PHC 9.190 9.195

ALS 2.779 × 102 5.448× 102

1.0 HEIV 4.448 3.652× 101

PHC 2.816 2.816

we used the AML cost function, with the standard value of JAML averaged across the
points in the image.

To ensure that the outputs of the algorithms can be interpreted as genuine pairs of
lines, all estimates were post-hoc EVD corrected. The JAML value of the corrected
estimates, Rank-2 JAML, is given in the rightmost columns in Tables 1 and 2. It is this
Rank-2 JAML number that is the most informative indicator of the performance of a
particular method.

Tables 1 and 2 give the cost function values for 3 types of estimates. Table 1 shows
that, on average, HEIV is an effective minimiser of JAML, and that PHC coupled
with EVD correction produces better results that the EVD-corrected HEIV scheme.
Moreover—and this is a critical observation—when applied to the PHC estimate, EVD
correction leaves the JAML value virtually unaffected (unlike in the case of the HEIV
estimate, where EVD correction markedly worsens the JAML value). This confirms that
the result of approximate constrained optimisation has an almost optimal form and that
EVD correction in this case amounts to a tiny push, which can be stably executed in the
presence of noise.
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Table 2. Medians of testing results

σ Method JAML Rank-2 JAML

ALS 1.135× 10−2 1.113× 10−2

0.1 HEIV 9.517× 10−3 1.037× 10−2

PHC 9.713× 10−3 9.713× 10−3

ALS 3.738× 10−1 3.687× 10−1

0.55 HEIV 3.092× 10−1 3.277× 10−1

PHC 3.121× 10−1 3.121× 10−1

ALS 1.094 1.212
1.0 HEIV 9.498× 10−1 1.093

PHC 9.509× 10−1 9.509× 10−1

Table 2 presents the results of the same tests but reports the median, rather than
mean, of the JAML values. As the median is usually more representative of the central
tendency of a sample set than the mean, Table 2 provides a better indication of the
performance of the algorithms on a typical trial.

8 Conclusions and Future Work

We have presented a novel version of GPCA for the case of fitting a pair of lines to
data, with a message extending to the general case of multi-component estimation. At
the core of our formulation lies the reduction of the underlying estimation problem
to minimisation of an error function having solid statistical foundations, subject to a
parameter constraint. We have proposed a technique for isolating an approximate con-
strained minimiser of that function. Preliminary experiments show that our algorithm
provides better results than the standard GPCA based on unconstrained minimisation
of a simple algebraic error function.

There are clearly a number of ways in which the work reported in this paper can
be extended. The case of multiple lines can be approached starting from the obser-
vation that equation (1) characterising a pair of lines can equivalently be written as
(l1 ⊗s l2)T (m ⊗ m) = 0, where l1 ⊗s l2 = (l1 ⊗ l2 + l2 ⊗ l1)/2 is the symmetric
tensor product of l1 and l2, and ⊗ denotes the Kronecker (or tensor) product. More gen-
erally, the equation for an aggregate of k lines is (l1 ⊗s · · ·⊗s lk)T (m⊗· · ·⊗m) = 0,
where l1 ⊗s · · · ⊗s lk = (k!)−1 ∑

σ∈Sk
lσ(1) ⊗ · · · ⊗ lσ(k) and Sk is the symmetric

group on k elements. It is known that the totally decomposable symmetric tensors of
the form l1 ⊗s · · · ⊗s lk constitute an algebraic variety within the space of all symmet-
ric tensors [Lim, 1992]. However, no explicit formula for the underlying constraints is
known (this is a fundamental difference with the case of totally decomposable antisym-
metric tensors). Working out these constraints in concrete cases like those involving
low values of k will immediately allow the new version of GPCA to cope with larger
multi-line structures. More generally, progress in applying the constrained GPCA to
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estimating more complicated multi-component structures will strongly depend on suc-
cessful identification of relevant constraints.

References

Brooks, M.J., Chojnacki, W., Gawley, D., van den Hengel, A.: What value covariance information
in estimating vision parameters? In: Proc. Eighth Int. Conf. Computer Vision, vol. 1, pp.
302–308 (2001)

Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: On the fitting of surfaces to data
with covariances. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1294–1303 (2000)

Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: From FNS and HEIV: A link
between two vision parameter estimation methods. IEEE Trans. Pattern Anal. Mach. In-
tell. 26(2), 264–268 (2004a)

Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: A new constrained parameter
estimator for computer vision applications. Image and Vision Computing 22, 85–91 (2004b)

Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: FNS, CFNS and HEIV: A unifying
approach. J. Math. Imaging and Vision 23(2), 175–183 (2005)

Duda, R.O., Hart, P.E.: Use of the Hough transform to detect lines and curves in pictures. Com-
mun. ACM 15, 11–15 (1972)

Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern
Anal. Mach. Intell. 21(5), 476–480 (1999)

Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice-Hall, Englewood Cliffs
(2003)
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